Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
JMIR Public Health Surveill ; 8(5): e29343, 2022 05 12.
Article in English | MEDLINE | ID: covidwho-2141334

ABSTRACT

BACKGROUND: Since the initial COVID-19 cases were identified in the United States in February 2020, the United States has experienced a high incidence of the disease. Understanding the risk factors for severe outcomes identifies the most vulnerable populations and helps in decision-making. OBJECTIVE: This study aims to assess the factors associated with COVID-19-related deaths from a large, national, individual-level data set. METHODS: A cohort study was conducted using data from the Optum de-identified COVID-19 electronic health record (EHR) data set; 1,271,033 adult participants were observed from February 1, 2020, to August 31, 2020, until their deaths due to COVID-19, deaths due to other reasons, or the end of the study. Cox proportional hazards models were constructed to evaluate the risks for each patient characteristic. RESULTS: A total of 1,271,033 participants (age: mean 52.6, SD 17.9 years; male: 507,574/1,271,033, 39.93%) were included in the study, and 3315 (0.26%) deaths were attributed to COVID-19. Factors associated with COVID-19-related death included older age (80 vs 50-59 years old: hazard ratio [HR] 13.28, 95% CI 11.46-15.39), male sex (HR 1.68, 95% CI 1.57-1.80), obesity (BMI 40 vs <30 kg/m2: HR 1.71, 95% CI 1.50-1.96), race (Hispanic White, African American, Asian vs non-Hispanic White: HR 2.46, 95% CI 2.01-3.02; HR 2.27, 95% CI 2.06-2.50; HR 2.06, 95% CI 1.65-2.57), region (South, Northeast, Midwest vs West: HR 1.62, 95% CI 1.33-1.98; HR 2.50, 95% CI 2.06-3.03; HR 1.35, 95% CI 1.11-1.64), chronic respiratory disease (HR 1.21, 95% CI 1.12-1.32), cardiac disease (HR 1.10, 95% CI 1.01-1.19), diabetes (HR 1.92, 95% CI 1.75-2.10), recent diagnosis of lung cancer (HR 1.70, 95% CI 1.14-2.55), severely reduced kidney function (HR 1.92, 95% CI 1.69-2.19), stroke or dementia (HR 1.25, 95% CI 1.15-1.36), other neurological diseases (HR 1.77, 95% CI 1.59-1.98), organ transplant (HR 1.35, 95% CI 1.09-1.67), and other immunosuppressive conditions (HR 1.21, 95% CI 1.01-1.46). CONCLUSIONS: This is one of the largest national cohort studies in the United States; we identified several patient characteristics associated with COVID-19-related deaths, and the results can serve as the basis for policy making. The study also offered directions for future studies, including the effect of other socioeconomic factors on the increased risk for minority groups.


Subject(s)
COVID-19 , Adult , Black or African American , Cohort Studies , Humans , Male , Middle Aged , SARS-CoV-2 , United States/epidemiology , White People
2.
Biomed Res Int ; 2022: 4942697, 2022.
Article in English | MEDLINE | ID: covidwho-1923348

ABSTRACT

Background: Hyperamylasemia (HA) is an inconspicuous manifestation of hemorrhagic fever with renal syndrome (HFRS) in Baoji city, West China. Hantaan virus (HTNV) is the only pathogen-caused HFRS in this region, but the knowledge about HA in the local HFRS patients has been limited. The aim of this study was to investigate the characteristics of HA and its predictive risk factors for doctors to engage in timely monitoring and dealing with the possible serious changes prewarned by HA in the early stages of the disease to improve the final outcome. Methods: All HFRS patients with and without HA (HA and nHA groups, respectively) were treated in Baoji People's Hospital. The clinical characteristics between the two groups were compared by Student's t-test or Chi-square test. The risk factors for prognosis were measured by the logistic regression analysis. The predictive effects of prognosis in clinical and laboratory parameters were analyzed by the receiver operating characteristic curves. Results: 46.53% of the patients demonstrated HA, among which 71.7% were severe and critical types of HFRS, greater than that in the nHA group (19.57%, P < 0.001). The hospitalization day and the general incidence of acute pancreatitis (AP) were longer or greater in the HA group than in the nHA group (P < 0.01). Age and the time from the onset of the first symptom to the patient being admitted to hospital (T OA) were the predictive risk factors for HA. The best cut-off values were the age of 54 years and T OA of 5.5 days. Conclusion: HTNV-induced HA is a common clinical presentation of HFRS patients in West China. It can increase the severity, the hospitalization days of patients, and the incidence of AP in HFRS. Age and T OA constituted independent risk factors for HA caused by HTNV.


Subject(s)
Hantaan virus , Hemorrhagic Fever with Renal Syndrome , Hyperamylasemia , Pancreatitis , Acute Disease , China/epidemiology , Hemorrhagic Fever with Renal Syndrome/complications , Hemorrhagic Fever with Renal Syndrome/diagnosis , Hemorrhagic Fever with Renal Syndrome/epidemiology , Humans , Middle Aged , Pancreatitis/epidemiology , Retrospective Studies
3.
Genes (Basel) ; 13(7)2022 07 06.
Article in English | MEDLINE | ID: covidwho-1917410

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused a dramatic loss of human life and devastated the worldwide economy. Numerous efforts have been made to mitigate COVID-19 symptoms and reduce the death rate. We conducted literature mining of more than 250 thousand published works and curated the 174 most widely used COVID-19 medications. Overlaid with the human protein-protein interaction (PPI) network, we used Steiner tree analysis to extract a core subnetwork that grew from the pharmacological targets of ten credible drugs ascertained by the CTD database. The resultant core subnetwork consisted of 34 interconnected genes, which were associated with 36 drugs. Immune cell membrane receptors, the downstream cellular signaling cascade, and severe COVID-19 symptom risk were significantly enriched for the core subnetwork genes. The lung mast cell was most enriched for the target genes among 1355 human tissue-cell types. Human bronchoalveolar lavage fluid COVID-19 single-cell RNA-Seq data highlighted the fact that T cells and macrophages have the most overlapping genes from the core subnetwork. Overall, we constructed an actionable human target-protein module that mainly involved anti-inflammatory/antiviral entry functions and highly overlapped with COVID-19-severity-related genes. Our findings could serve as a knowledge base for guiding drug discovery or drug repurposing to confront the fast-evolving SARS-CoV-2 virus and other severe infectious diseases.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , COVID-19/genetics , Humans , Network Pharmacology , Pandemics , SARS-CoV-2/genetics
4.
J Biomed Inform ; 130: 104079, 2022 06.
Article in English | MEDLINE | ID: covidwho-1804425

ABSTRACT

OBJECTIVE: The Coronavirus Disease 2019 (COVID-19) pandemic has overwhelmed the capacity of healthcare resources and posed a challenge for worldwide hospitals. The ability to distinguish potentially deteriorating patients from the rest helps facilitate reasonable allocation of medical resources, such as ventilators, hospital beds, and human resources. The real-time accurate prediction of a patient's risk scores could also help physicians to provide earlier respiratory support for the patient and reduce the risk of mortality. METHODS: We propose a robust real-time prediction model for the in-hospital COVID-19 patients' probability of requiring mechanical ventilation (MV). The end-to-end neural network model incorporates the Multi-task Gaussian Process to handle the irregular sampling rate in observational data together with a self-attention neural network for the prediction task. RESULTS: We evaluate our model on a large database with 9,532 nationwide in-hospital patients with COVID-19. The model demonstrates significant robustness and consistency improvements compared to conventional machine learning models. The proposed prediction model also shows performance improvements in terms of area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) compared to various deep learning models, especially at early times after a patient's hospital admission. CONCLUSION: The availability of large and real-time clinical data calls for new methods to make the best use of them for real-time patient risk prediction. It is not ideal for simplifying the data for traditional methods or for making unrealistic assumptions that deviate from observation's true dynamics. We demonstrate a pilot effort to harmonize cross-sectional and longitudinal information for mechanical ventilation needing prediction.


Subject(s)
COVID-19 , Attention , COVID-19/epidemiology , COVID-19/therapy , Cross-Sectional Studies , Humans , Neural Networks, Computer , Retrospective Studies , Ventilators, Mechanical
5.
Sci Rep ; 11(1): 23179, 2021 11 30.
Article in English | MEDLINE | ID: covidwho-1545641

ABSTRACT

Since the 2019 novel coronavirus disease (COVID-19) outbreak in 2019 and the pandemic continues for more than one year, a vast amount of drug research has been conducted and few of them got FDA approval. Our objective is to prioritize repurposable drugs using a pipeline that systematically integrates the interaction between COVID-19 and drugs, deep graph neural networks, and in vitro/population-based validations. We first collected all available drugs (n = 3635) related to COVID-19 patient treatment through CTDbase. We built a COVID-19 knowledge graph based on the interactions among virus baits, host genes, pathways, drugs, and phenotypes. A deep graph neural network approach was used to derive the candidate drug's representation based on the biological interactions. We prioritized the candidate drugs using clinical trial history, and then validated them with their genetic profiles, in vitro experimental efficacy, and population-based treatment effect. We highlight the top 22 drugs including Azithromycin, Atorvastatin, Aspirin, Acetaminophen, and Albuterol. We further pinpointed drug combinations that may synergistically target COVID-19. In summary, we demonstrated that the integration of extensive interactions, deep neural networks, and multiple evidence can facilitate the rapid identification of candidate drugs for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Neural Networks, Computer
6.
JMIR Med Inform ; 9(7): e27449, 2021 Jul 19.
Article in English | MEDLINE | ID: covidwho-1308233

ABSTRACT

The global and national response to the COVID-19 pandemic has been inadequate due to a collective lack of preparation and a shortage of available tools for responding to a large-scale pandemic. By applying lessons learned to create better preventative methods and speedier interventions, the harm of a future pandemic may be dramatically reduced. One potential measure is the widespread use of contact tracing apps. While such apps were designed to combat the COVID-19 pandemic, the time scale in which these apps were deployed proved a significant barrier to efficacy. Many companies and governments sprinted to deploy contact tracing apps that were not properly vetted for performance, privacy, or security issues. The hasty development of incomplete contact tracing apps undermined public trust and negatively influenced perceptions of app efficacy. As a result, many of these apps had poor voluntary public uptake, which greatly decreased the apps' efficacy. Now, with lessons learned from this pandemic, groups can better design and test apps in preparation for the future. In this viewpoint, we outline common strategies employed for contact tracing apps, detail the successes and shortcomings of several prominent apps, and describe lessons learned that may be used to shape effective contact tracing apps for the present and future. Future app designers can keep these lessons in mind to create a version that is suitable for their local culture, especially with regard to local attitudes toward privacy-utility tradeoffs during public health crises.

7.
J Am Med Inform Assoc ; 28(8): 1765-1776, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1246728

ABSTRACT

OBJECTIVE: To utilize, in an individual and institutional privacy-preserving manner, electronic health record (EHR) data from 202 hospitals by analyzing answers to COVID-19-related questions and posting these answers online. MATERIALS AND METHODS: We developed a distributed, federated network of 12 health systems that harmonized their EHRs and submitted aggregate answers to consortia questions posted at https://www.covid19questions.org. Our consortium developed processes and implemented distributed algorithms to produce answers to a variety of questions. We were able to generate counts, descriptive statistics, and build a multivariate, iterative regression model without centralizing individual-level data. RESULTS: Our public website contains answers to various clinical questions, a web form for users to ask questions in natural language, and a list of items that are currently pending responses. The results show, for example, that patients who were taking angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, within the year before admission, had lower unadjusted in-hospital mortality rates. We also showed that, when adjusted for, age, sex, and ethnicity were not significantly associated with mortality. We demonstrated that it is possible to answer questions about COVID-19 using EHR data from systems that have different policies and must follow various regulations, without moving data out of their health systems. DISCUSSION AND CONCLUSIONS: We present an alternative or a complement to centralized COVID-19 registries of EHR data. We can use multivariate distributed logistic regression on observations recorded in the process of care to generate results without transferring individual-level data outside the health systems.


Subject(s)
Algorithms , COVID-19 , Computer Communication Networks , Confidentiality , Electronic Health Records , Information Storage and Retrieval/methods , Natural Language Processing , Common Data Elements , Female , Humans , Logistic Models , Male , Registries
8.
J Biomed Inform ; 119: 103818, 2021 07.
Article in English | MEDLINE | ID: covidwho-1237740

ABSTRACT

OBJECTIVE: Study the impact of local policies on near-future hospitalization and mortality rates. MATERIALS AND METHODS: We introduce a novel risk-stratified SIR-HCD model that introduces new variables to model the dynamics of low-contact (e.g., work from home) and high-contact (e.g., work on-site) subpopulations while sharing parameters to control their respective R0(t) over time. We test our model on data of daily reported hospitalizations and cumulative mortality of COVID-19 in Harris County, Texas, from May 1, 2020, until October 4, 2020, collected from multiple sources (USA FACTS, U.S. Bureau of Labor Statistics, Southeast Texas Regional Advisory Council COVID-19 report, TMC daily news, and Johns Hopkins University county-level mortality reporting). RESULTS: We evaluated our model's forecasting accuracy in Harris County, TX (the most populated county in the Greater Houston area) during Phase-I and Phase-II reopening. Not only does our model outperform other competing models, but it also supports counterfactual analysis to simulate the impact of future policies in a local setting, which is unique among existing approaches. DISCUSSION: Mortality and hospitalization rates are significantly impacted by local quarantine and reopening policies. Existing models do not directly account for the effect of these policies on infection, hospitalization, and death rates in an explicit and explainable manner. Our work is an attempt to improve prediction of these trends by incorporating this information into the model, thus supporting decision-making. CONCLUSION: Our work is a timely effort to attempt to model the dynamics of pandemics under the influence of local policies.


Subject(s)
COVID-19 , Hospitalization , Humans , Pandemics , Policy , SARS-CoV-2 , United States
9.
J Am Med Inform Assoc ; 28(9): 1964-1969, 2021 08 13.
Article in English | MEDLINE | ID: covidwho-1199492

ABSTRACT

OBJECTIVE: Clinical trials are an essential part of the effort to find safe and effective prevention and treatment for COVID-19. Given the rapid growth of COVID-19 clinical trials, there is an urgent need for a better clinical trial information retrieval tool that supports searching by specifying criteria, including both eligibility criteria and structured trial information. MATERIALS AND METHODS: We built a linked graph for registered COVID-19 clinical trials: the COVID-19 Trial Graph, to facilitate retrieval of clinical trials. Natural language processing tools were leveraged to extract and normalize the clinical trial information from both their eligibility criteria free texts and structured information from ClinicalTrials.gov. We linked the extracted data using the COVID-19 Trial Graph and imported it to a graph database, which supports both querying and visualization. We evaluated trial graph using case queries and graph embedding. RESULTS: The graph currently (as of October 5, 2020) contains 3392 registered COVID-19 clinical trials, with 17 480 nodes and 65 236 relationships. Manual evaluation of case queries found high precision and recall scores on retrieving relevant clinical trials searching from both eligibility criteria and trial-structured information. We observed clustering in clinical trials via graph embedding, which also showed superiority over the baseline (0.870 vs 0.820) in evaluating whether a trial can complete its recruitment successfully. CONCLUSIONS: The COVID-19 Trial Graph is a novel representation of clinical trials that allows diverse search queries and provides a graph-based visualization of COVID-19 clinical trials. High-dimensional vectors mapped by graph embedding for clinical trials would be potentially beneficial for many downstream applications, such as trial end recruitment status prediction and trial similarity comparison. Our methodology also is generalizable to other clinical trials.


Subject(s)
COVID-19 , Clinical Trials as Topic , Computer Graphics , Cluster Analysis , Databases, Factual , Humans , Natural Language Processing , SARS-CoV-2
10.
Ann Clin Transl Neurol ; 8(4): 929-937, 2021 04.
Article in English | MEDLINE | ID: covidwho-1092495

ABSTRACT

OBJECTIVE: To review the global impact of the COVID-19 pandemic on stroke care-metrics and report data from a health system in Houston. METHODS: We performed a meta-analysis of the published literature reporting stroke admissions, intracerebral hemorrhage (ICH) cases, number of thrombolysis (tPA) and thrombectomy (MT) cases, and time metrics (door to needle, DTN; and door to groin time, DTG) during the pandemic compared to prepandemic period. Within our hospital system, between January-June 2019 and January-June 2020, we compared the proportion of stroke admissions and door to tPA and MT times. RESULTS: A total of 32,640 stroke admissions from 29 studies were assessed. Compared to prepandemic period, the mean ratio of stroke admissions during the pandemic was 70.78% [95% CI, 65.02%, 76.54%], ICH cases was 83.10% [95% CI, 71.01%, 95.17%], tPA cases was 81.74% [95% CI, 72.33%, 91.16%], and MT cases was 88.63% [95% CI, 74.12%, 103.13%], whereas DTN time was 104.48% [95% CI, 95.52%, 113.44%] and DTG was 104.30% [95% CI, 81.99%, 126.61%]. In Houston, a total of 4808 cases were assessed. There was an initial drop of ~30% in cases at the pandemic onset. Compared to 2019, there was a significant reduction in mild strokes (NIHSS 1-5) [N (%), 891 (43) vs 635 (40), P = 0.02]. There were similar mean (SD) (mins) DTN [44 (17) vs 42 (17), P = 0.14] but significantly prolonged DTG times [94 (15) vs 85 (20), P = 0.005] in 2020. INTERPRETATION: The COVID-19 pandemic led to a global reduction in stroke admissions and treatment interventions and prolonged treatment time metrics.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Patient Admission/trends , Stroke/epidemiology , Stroke/therapy , Brain Ischemia/epidemiology , Brain Ischemia/therapy , Fibrinolytic Agents/administration & dosage , Humans , Pandemics , Texas/epidemiology , Thrombectomy/trends , Thrombolytic Therapy/trends
11.
J Am Med Inform Assoc ; 27(11): 1721-1726, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-1024117

ABSTRACT

Global pandemics call for large and diverse healthcare data to study various risk factors, treatment options, and disease progression patterns. Despite the enormous efforts of many large data consortium initiatives, scientific community still lacks a secure and privacy-preserving infrastructure to support auditable data sharing and facilitate automated and legally compliant federated analysis on an international scale. Existing health informatics systems do not incorporate the latest progress in modern security and federated machine learning algorithms, which are poised to offer solutions. An international group of passionate researchers came together with a joint mission to solve the problem with our finest models and tools. The SCOR Consortium has developed a ready-to-deploy secure infrastructure using world-class privacy and security technologies to reconcile the privacy/utility conflicts. We hope our effort will make a change and accelerate research in future pandemics with broad and diverse samples on an international scale.


Subject(s)
Biomedical Research , Computer Security , Coronavirus Infections , Information Dissemination , Pandemics , Pneumonia, Viral , Privacy , COVID-19 , Humans , Information Dissemination/ethics , Internationality , Machine Learning
12.
medRxiv ; 2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-808753

ABSTRACT

There is an urgent need to answer questions related to COVID-19's clinical course and associations with underlying conditions and health outcomes. Multi-center data are necessary to generate reliable answers, but centralizing data in a single repository is not always possible. Using a privacy-protecting strategy, we launched a public Questions & Answers web portal (https://covid19questions.org) with analyses of comorbidities, medications and laboratory tests using data from 202 hospitals (59,074 COVID-19 patients) in the USA and Germany. We find, for example, that 8.6% of hospitalizations in which the patient was not admitted to the ICU resulted in the patient returning to the hospital within seven days from discharge and that, when adjusted for age, mortality for hospitalized patients was not significantly different by gender or ethnicity.

13.
ArXiv ; 2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-807713

ABSTRACT

Amid the pandemic of 2019 novel coronavirus disease (COVID-19) infected by SARS-CoV-2, a vast amount of drug research for prevention and treatment has been quickly conducted, but these efforts have been unsuccessful thus far. Our objective is to prioritize repurposable drugs using a drug repurposing pipeline that systematically integrates multiple SARS-CoV-2 and drug interactions, deep graph neural networks, and in-vitro/population-based validations. We first collected all the available drugs (n= 3,635) involved in COVID-19 patient treatment through CTDbase. We built a SARS-CoV-2 knowledge graph based on the interactions among virus baits, host genes, pathways, drugs, and phenotypes. A deep graph neural network approach was used to derive the candidate representation based on the biological interactions. We prioritized the candidate drugs using clinical trial history, and then validated them with their genetic profiles, in vitro experimental efficacy, and electronic health records. We highlight the top 22 drugs including Azithromycin, Atorvastatin, Aspirin, Acetaminophen, and Albuterol. We further pinpointed drug combinations that may synergistically target COVID-19. In summary, we demonstrated that the integration of extensive interactions, deep neural networks, and rigorous validation can facilitate the rapid identification of candidate drugs for COVID-19 treatment.

14.
J Am Med Inform Assoc ; 27(9): 1437-1442, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-610367

ABSTRACT

Large observational data networks that leverage routine clinical practice data in electronic health records (EHRs) are critical resources for research on coronavirus disease 2019 (COVID-19). Data normalization is a key challenge for the secondary use of EHRs for COVID-19 research across institutions. In this study, we addressed the challenge of automating the normalization of COVID-19 diagnostic tests, which are critical data elements, but for which controlled terminology terms were published after clinical implementation. We developed a simple but effective rule-based tool called COVID-19 TestNorm to automatically normalize local COVID-19 testing names to standard LOINC (Logical Observation Identifiers Names and Codes) codes. COVID-19 TestNorm was developed and evaluated using 568 test names collected from 8 healthcare systems. Our results show that it could achieve an accuracy of 97.4% on an independent test set. COVID-19 TestNorm is available as an open-source package for developers and as an online Web application for end users (https://clamp.uth.edu/covid/loinc.php). We believe that it will be a useful tool to support secondary use of EHRs for research on COVID-19.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/classification , Coronavirus Infections/diagnosis , Logical Observation Identifiers Names and Codes , Pneumonia, Viral/diagnosis , Terminology as Topic , COVID-19 , COVID-19 Testing , Coronavirus Infections/classification , Electronic Health Records , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL